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In  this paper we investigate nonlinear interactions of narrowband, Gaussian-random, 
inhomogeneous wavetrains. Alber studied the stability of a homogeneous wave 
spectrum as a function of the width (T of the spectrum. For vanishing bandwidth the 
deterministic results of Benjamin & Feir on the instability of a uniform wavetrain 
were rediscovered whereas a homogeneous wave spectrum was found to be stable if 
the bandwidth is sufficiently large. Clearly, a threshold for instability is present, and 
in this paper we intend to study the long-time behaviour of a slightly unstable 
modulation by means of a multiple-timescale technique. Two interesting cases are 
found. For small but finite bandwidth c the amplitude of the unstable modulation 
shows initially an overshoot, followed by an oscillation around the time-asymptotic 
value of the amplitude. This oscillation damps owing to phase mixing except for 
vanishing bandwidth because then the well-known Fermi-Pasta-Ulam recurrence is 
found. For large bandwidth, however, no overshoot is found since the damping is 
overwhelming. In  both cases the instability is quenched because of a broadening of 
the spectrum. 

1. Introduction 
Starting with investigations of Phillips (1960) and Hasselmann (1962, 1963) there 

has been much interest in the energy transfer due to four-wave interactions in a nearly 
homogeneous random sea (Hasselmann et al. 1973 ; Watson & West 1975 ; Willebrand 
1975). Longuet-Higgins (1976) derived the narrowband limit of Hasselmann’s 
equation by starting from the nonlinear Schrodinger equation, describing the 
evolution of the envelope of a narrowband, weakly nonlinear wavetrain. All this 
nonlinear energy transfer occurs on a rather long timescale since the rate of change 
of the action density n is proportional to n3. Hence (an/at)/n = O(e4w,), where e is 
the wave steepness and wo is a typical frequency of the wave field. 

A much faster energy transfer is possible in the presence of spatial inhomogeneities. 
For an inhomogeneous random sea Watson & West (1975) and Willebrnnd (1975) 
obtained lower-order corrections to the transport equation of Hasselmann. Also, 
Alber (1978) and Alber & Saffman (1978) derived an equation describing the evolution 
of a random narrowband wavetrain. Just like Longuet-Higgins (1976), their starting 
point was the nonlinear Schrodinger equation or its equivalent for finite depth. 
Finally, starting from the full equations of motion, Crawford, Saffman & Yuen (1980), 
following Zakharov’s (1968) approach, obtained a unified equation for the evolution 
of a random field of deep-water waves which accounts for both the effects of spatial 
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inhomogeneity and the energy transfer associated with a homogeneous spectrum. 
From their analysis i t  became apparent that spatial inhomogeneities gave rise to a 
much faster energy transfer ((an/at)/n = O(szo0)),  though this energy transfer is 
reversible. The energy transfer associated with a homogeneous sea is, however, 
irreversible. 

It should be emphasized that the assumption of an inhomogeneous wave field 
makes sense because Alber (1978) showed that a homogeneous spectrum is unstable 
to long-wavelength perturbations if the width of the spectrum is sufficiently small. 
For a Gaussian spectrum the instability criterion was u,/wo = E ,  where u, is the width 
in frequency space. Similar results were also found by Crawford et al. (1980) for a 
Lorentzian shape of the spectrum. In  the limit of vanishing bandwidth the 
deterministic results of Benjamin & Feir (1967) on the instability of a uniform 
wavetrain were recovered. 

In  this paper we wish to investigate nonlinear interactions in an inhomogeneous 
wave field and we choose as our starting point the nonlinear transport equation for 
the envelope spectrum of a narrowband, Gaussian-random, surface wavetrain (Alber 
1978). The envelope spectrum is just the Fourier transform of the autocorrelation 
function of the envelope of the wavetrain and contains all the information of the 
stochastic wave field we need. The technique used by Alber (1978) to obtain the 
nonlinear transport equation was applied for the first time by Wigner (1932) in 
quantum mechanics. Applications of this technique to the field of plasma physics have 
been made by Tappert (1971) and Hasegawa (1975). 

According to the results of Alber (1978), Alber & Saffman (1978) and Crawford et 
al. (1980), the random equivalent of the Benjamin-Feir instability has a threshold 
for instability, and in this paper we intend to study the long-time behaviour of a 
slightly unstable modulation. We remark that with long-time we mean long on the 
timescale (ezwo)-l, which is, however, still short compared with the timescale ( s ~ w , , ) - ~  
for irreversible processes. Then, application of the multiple-timescale technique gives 
the Duffing equation with complex coefficients, 

as the evolution equation for the complex amplitude r of the slightly unstable 
modulation. 

Two interesting special cases are found. For small but finite bandwidth u the 
amplitude F initially shows overshoot followed by an oscillation around its time- 
asymptotic value. This oscillation is damped owing to phase mixing except in the 
limit of vanishing bandwidth because then the well-known Fermi-Pasta-Ulam (1940) 
recurrence (see also Lake et al. 1977) is recovered. In  the latter limit all the coefficients 
of ( 1 )  are real and B = 0, and (1)  is then similar to the evolution equation of the 
Benjamin-Feir instability of a deterministic narrow-band wavetrain (Janssen 1981). 
On the other hand, for large bandwidth (but small enough such that there still is 
instability) the damping due to phase mixing becomes overwhelming so that no 
overshoot is found. I n  the latter case one may neglect the second derivative in ( I ) ,  
and then the evolution equation for r is just the well-known Landau equation. 

We emphasize that, because of the finite bandwidth of the spectrum, limit-cycle 
behaviour is found instead of recurrence as in the deterministic Benjamin-Feir 
instability. An attempt is made to explain this ‘dissipative’ effect of finite bandwidth 
in terms of phase mixing of a continuum of normal modes of the linear problem, just 
like phase mixing of van Kampen (1955) modes of the linear Vlasov-Poisson system 
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from plasma physics explains the Landau (1946) damping of the Langmuir oscillations. 
I n  addition, for small bandwidth u the transition from stable to unstable involves 
two modes (a growing and a damped one) which are closely grouped together in 
frequency space, thus giving a second-order derivative in (1). This explains the 
overshoot effect. For large bandwidth, however, the ‘distance ’ in frequency space 
between the two modes is large so that the coupling between these modes becomes 
unimportant. Although we have not made a detailed comparison of this theory with 
observations a t  sea, i t  is tempting to relate our result to  the well-known ‘overshoot 
phenomenon’ observed in growing surface gravity waves under the action of the wind 
(Phillips 1977). This is because we not only have found overshoot in the amplitude 
of an unstable modulation of a homogeneous spectrum but also because the timescale 
for nonlinear energy transfer due to inhomogeneities seems to be of the right order 
of magnitude. 

The plan of this paper is as follows. I n  $2 we derive the equation for the envelope 
spectrum from the one-dimensional nonlinear Schrodinger equation and we briefly 
review the linear stability theory of a homogeneous spectrum of random, narrowband 
wavetrains. I n  addition, the behaviour of the dispersion relation near the threshold 
for instability is investigated and in $3  we derive the nonlinear evolution equation 
for the amplitude of a slightly unstable modulation by means of the multiple-timescale 
method. We also present a simple interpretation of the saturation of the instability 
for the case that second harmonics may be neglected (quasilinear approximation) and 
we conclude with a summary of conclusions ($4). In  the appendix we explain the 
stabilizing effect of finite bandwidth in terms of phase mixing of the normal modes 
of the linearized equation for the envelope spectrum. We finally remark that we shall 
not give the details of our calculations because they may be found in a paper of Simon 
& Rosenbluth (1976), who dealt with similar problems when discussing the saturation 
of a single mode of the so-called bump-on-tail instability of plasma physics. In  
particular, this reference should be consulted for a procedure to  deal with integrals 
involving products of generalized functions. 

2. The transport equation for the envelope spectrum and linear theory 
I n  order to investigate the effect of inhomogeneities such as wave groups on the 

nonlinear energy transfer of weakly nonlinear water waves we propose to study the 
nonlinear Schrodinger equation. This equation may be applied to the case of water 
waves with a narrowband spectrum and small wave steepness so that in a good 
approximation the surface elevation is given by 

5 x Re (A(x, t )  expi(kox-wot)). (2) 

Here wo and k, are the angular frequency and the wavenumber of the carrier wave, 
which obey the deep-water dispersion relation wo = (gko) i ,  and A ( x ,  t )  is the slowly 
varying complex envelope of the wave. 

Application of the multiple-timescale technique to the exact deep-water equations 
then gives the following nonlinear Schrodinger equation for A(x, t )  : 

where a prime denotes differentiation with respect to  k. Transforming to a frame 
moving with the group velocity wA and introducing dimensionless units t“ = hot, 
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Z = 2k0x and 2 = k, A ,  the equation for 3 (which is now just the wave steepness 
6 for the uniform wavetrain) reads 

a a 2  
i-A- -A-IA12A = 0, 
at a x 2  

(4) 

where we have dropped the tildes. To proceed, we follow Alber (1978) and define the 
two-point correlation function p(xl, x2, t )  as 

P(X, r ,  4 = (4x1 ,  t )  A*(%,, t ) ) ,  (5)  

where the averaged coordinate x = +(xl +x2), the separation coordinate r = x2-x1 
and the angle brackets denote an ensemble average. The asterisks denote the complex 
conjugate (c.c.). Following Wigner (1932) and Alber (1978), we obtain the transport 
equation for p(x,r,t) by multiplying the equation (4) for A(xl,t) by A*(x,,t), adding 
the complex-conjugate expression with x1 and x2 interchanged, and averaging. The 
result is 

hence the rate of change of the two-point correlation function is related to the 
four-point correlation function. Closure is achieved by assuming the quasi-Gaussian 
approximation, e.g. 

(A2(%,) A*(%) A*(x2)) = 2 W X l )  A*(x1)) (A(X1) A*(22)). (7) 
If, in addition, we transform to the averaged coordinate x and the separation 
coordinate r ,  we obtain from (6) 

(8) 
. a  a 2  

at ax ar 
i--p(x, r)-2--p(x, r)-2p(x,r) [p(z+~r,O)--p(x-&,O)] = 0. 

Finally, we introduce the envelope spectrum W according to 

When the spatial separation r = 0 we obtain the mean-square wave steepness 

00 

P(X, 0) = <14x)12) = J-, dP W ( X ,  PI. (10) 

By application of the standard procedures, we obtain from (8) the following transport 
equation for W: 

Equation (1  1 )  describes the evolution of an inhomogeneous ensemble of narrowband 
weakly nonlinear wavetrains. The timescale for nonlinear energy transfer can easily 
be estimated from (8) with the result 

Ge = O(p) = O ( S 2 ) .  
P at 
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This energy transfer (owing to  spatial inhomogeneities) is, however, reversible, 
since (11) is invariant under the transformation t+ -t,  p +  - p .  If one includes 
deviations from Gaussian statistics, which are generated because nonlinearity gives 
rise to correlations between the different components of the envelope spectrum, 
irreversible changes in the envelope spectrum of water waves occur. Crawford et al. 
( 1980) have shown, however, that these irreversible changes (including the nonlinear 
energy transfer associated with a homogeneous sea; Hasselmann 1962) occur on the 
much longer timescale ‘ T ~ ~ ~ ~ ~  = 0(c4). 

We emphasize that the assumption of an inhomogenous ensemble of wavetrains 
seems useful because Alber (1978) showed that a homogeneous spectrum is unstable 
to long-wavelength perturbations if the width of the spectrum is sufficiently small. 
To see this, we perturb the homogeneous envelope spectrum Wok)  slightly according 
to 

Then, substitution of (13) in (11) and linearization in W, gives the linear problem 

w = wok)+ Wl(X,P), w, < w,. (13) 

where 
a, 

P l = J  --m dPw, 

Let us consider perturbations of the type 

W, = Wlk, t)eiex; 

then as a result we obtain the following integro-differential equation for Wl : 
a, 

-%+2ikp% a = -2ik71@)j dp @, 
at -a, 

One may now immediately solve (16) by means of the Laplace-transform technique. 
I n  an analogous fashion, Landau (1946) treated the similar-looking linearized Vlasov 
equation of plasma physics in order to obtain the Landau damping of Langmuir 
oscillations. The result of the application of the Laplace-transform technique is that  
for large times pI1 = dp Wl consists of a sum of exponentials (in the case of simple 
roots of (17)): c1 = xaiexp  ( - ;w i t ) ,  

where a3 is determined by the initial condition and mi is determined by the dispersion 
relation 

3 

For positive times the contour of integration is indented below the singularity a t  
p = v .  

Alber (1978) investigated the dispersion relation (1 7)  for a Gaussian spectrum, 
whereas Crawford et al. (1980) considered the Lorentz spectrum 

<A;> 0- W -  
O - 7t(p2+0-2)’ 
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I 
k +  2(A i )4  

FIGURE 1 .  Stability diagram of a uniform wavetrain with random phase 
in one space dimension. 

where CT is the width of the spectrum and ( A : )  is the mean-square wave steepness. 
D may be evaluated immediately with the result 

= 0, ( A 3  D = 1 +  
( v  + i(r)2 -akz 

so that 
v +  = -ia-t-(+k2-(A:))i. 

We have instability for Im (v) > 0, and the stability boundary consists of the line 
k = 0 and the ellipse 

Note that in the limit of vanishing bandwidth CT the growth rate (20) reduces to 
the result of Benjamin & Feir (1967) for a deterministic wavetrain if one makes the 
identification 2( A:)  (Gaussian random) = A: (deterministic). We also remark that 
finite bandwidth u gives a reduction of the growth rate and that when 

CT 2 (A:)$ 

the instability disappears. The question of the nature of the stabilizing effect of finite 
bandwidth is important. First of all we note that this stabilizing effect is not of a 
dissipative nature since (20) and also the ‘dispersion relation ’ (17) depend on the sense 
of time. For positive times the contour of integration (in (17)) has to be indented below 
the singularity a t  p = v ,  whereas for negative times the contour has to be indented 
above the singularity. As a result, for negative times the roots of the dispersion 
relation are just the complex conjugate of the roots for positive times. Therefore our 
results are symmetrical with respect to the initial point of departure, in agreement 
with the invariance of the transport equation for the envelope spectrum (1  1)  under 
time reversal. In  the appendix an attempt is made to explain the stabilizing effect 
of finite bandwidth. To that end we solve the linear problem for W, (14) by means 
of the normal-mode approach. I n  general, for fixed k one then has a discrete and a 
continuous frequency spectrum. For smooth initial data also the continuum modes 
are excited, giving rise to phase mixing of the solution to zero (in the case where there 
is no instability). The only exception is the limit of vanishing bandwidth since then 
the relevant functions are not smooth. This explanation is entirely analogous to the 
one given by van Kampen (1955) for the Landau damping of Langmuir waves (see 
also Case 1959). 

In the remaining part of this paper we wish to investiga.te the long-time behaviour 

+ +k2 = ( A : )  (see figure 1 ) .  
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of a single slightly unstable modulation. We therefore consider the initial-value 
problem for one particular modulation with a fixed wavenumber k near the threshold 
for instability (see figure 1). I n  particular, we are concerned with the effect of 
nonlinearities since they may considerably modify the growth rate of the initially 
unstable modulation. Before we proceed let us first study the behaviour of the roots 
of the dispersion relation (17)  near the threshold for instability. To this end we choose 
the averaged wave steepness 

roo 
(21 1 ( A : )  G J dpW,(p) = ( A : ) ,  ( 1  + A 2 ) ,  A 2  4 1, 

--m 

where ( A : ) ,  is the critical value for which the last unstable mode has just reached 
the real axis. This critical value of (A:)  exists by virtue of a discrete wavenumber 
k so that there are only a finite number of unstable modes. 

On application of the Plemelj formulae to the dispersion relation (17), it can easily 
be shown that at marginal stability v, must coincide with a zero of the function 7, 

7 c ( v c )  = 0, (22a) 

whereas the critical value of ( A : )  is determined by 

l + P s  O0 d p L =  7 (PI 0. 
--m P - V C  

Here P denotes the principal value and the subscript c denotes evaluation a t  the 
critical value of ( A : ) .  If one increases the mean-square wave steepness (A: )  above 
its critical value by a small fractional amount A 2  according to (21) (which is equivalent 
to 7 = a,(l + A 2 ) ) ,  one may solve the dispersion relation (17) approximately by 
expanding v in powers of A : 

To second order in A we then obtain from the dispersion relation (17) 

v = V , + A V , + A 2 V 2 +  .... (23) 

(24) 

where DI = (aD/av),, = y c ,  etc., and we see at once that in lowest order D(v,, 7,) = 0, 
which just corresponds to (22a, b ) .  Before we proceed to the next order we remark 
that at least the following possibilities may occur. 

A2v2 
2! 

D = D(V,,~,)+AV,D'+d2V2DI+ ~ D I I + A 2 ( D ( v c , v , ) - l )  = 0, 

(i) Simple-root transition 

When only a simple root is involved in the transition from stable to unstable we have 
D1 = O(1). Then, one immediately obtains from (24) that  v1 = 0 and 

1 
Y --, 

2 - 131 

Here the Roman superscript denotes differentiation with respect to  p. Hence v is an 
analytic function of the small parameter A 2 ,  and according to (25b) both a frequency 
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shift and growth of the modulation with wavenumber k is present if the mean-square 
wave steepness is increased above its critical value. 

(ii) Double-root transition 

When a double root is involved in the transition from stable to unstable we have 
DI = O ( A ) ,  or 

where 
obtain to  second order in A 

D1 = AD1, (26)  

= O(1). Clearly (25a)  is not meaningful in this case. Returning to  (24)  we 

$Drlvf+v,D1-l = 0 ;  (27 1 
hence 

For real DI’ we deal with two complex-conjugate modes if p = 0,  whereas finite # 
gives an asymmetry in the complex v-plane. It is also clear that  the growth rate of 
the modes is now of the order A instead of A2. This type of ‘singular’ behaviour of 
the growth rate as a function of the small parameter A 2  has been found in connection 
with other instabilities as well. We mention the Kelvin-Helmholtz instability with 
surface tension included (Drazin 1970; Nayfeh & Saric 1972) and the Benjamin-Feir 
instability in one space dimension (Janssen 1981). 

Let us apply the foregoing considerations to the special case of a Lorentzian profile 
(18). From (20)  the critical value of the mean-square wave steepness is found to be 

( A : ) ,  = a2++k2,  

and the critical value of v is given by v,  = 0.  Assuming first that 
gz = O(lc2), we obtain for DI, using (19) ,  

so that we are dealing with a simple-root case. A straightforward application of (25a)  
then gives for the first mode (cf. (20) with the plus sign) 

id2 
2 a  

v +  =- (a2 + )k2 )  ; 

hence, if the mean-square wave steepness ( A : )  is increased by a small fractional 
amount above its critical value, one mode moves into the unstable region, according 
to (29a) .  The other mode, which is damped (cf. (20) )  does not experience such a 
dramatic change. Substitution of (21)  in (20)  and expanding gives to second order 
in A2  

hence the damping rate of this mode hardly changes. We have illustrated this in 
figure 2 .  

We emphasize that in this case the two modes are widely separated in the complex 
v-plane, so that for the long-time behaviour only the v1 mode is of importance. Also 
note that there is no real part of v because the spectrum W, is symmetrical with 
respect to  p = 0 (Alber 1978). 
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Complex 
v-plane 

(a ) (b  1 
FIGURE 2. Behaviour of the roots of the dispersion relation with a Lorentzian profile near the 

threshold for instability: (a) broad spectrum, r = O ( k ) ;  ( b )  narrow spectrum, r = O(d).  

On the other hand, for a narrow spectrum, u = A 3  (see figure 2) we have 

- 8iAa 
k2 

DI = ___ +O(A2); 

hence we have a double-root case since D1 = O(d). Clearly (29a)  is not valid. 
Application of (28) then gives 

vf = - A i b [ l k ( l + ~ ~ ) : ]  

In  this case one may therefore expect a different time behaviour compared with a 
broad spectrum, because for a narrow spectrum the two modes are closely grouped 
in the complex v-plane (aee figure 2), therefore a strong interaction between these 
modes is possible. 

Hence, depending on the width of the spectrum, or more generally on the order 
of magnitude of DI, we expect a different long-time behaviour of a single slightly 
unstable mode. This problem will be studied in $3  by means of the multiple-scale 
technique. In  addition, the effect of nonlinearity is considered. 

We finally remark that if one formally takes the limit D'I-+O in the expression for 
v1 in the double-root case (see (28)) one recovers the simple-root transition as well. 
This is most easily seen by expanding the square root in (28) for small DI' and taking 
the limit DII -+O afterwards. This simplifies things considerably for the determination 
of the long-time behaviour of a single slightly unstable mode because we only need 
to investigate the transition of a double root in detail. The single-root case is then 
rediscovered by taking the limit D'I 0. 

3. Nonlinear evolution of a slightly unstable mode 
We wish to obtain the nonlinear evolution of the slightly unstable modes of the 

random version of the Benjamin-Feir instability. Details of the calculations are given 
for the double-root transition, whereas the single-root case is rediscovered by taking 
the appropriate limits. The transition from stable to unstable is obtained by 
increasing the mean-square wave steepness ( A : )  by a small fractional amount above 
its critical value. Since ( A : )  = dp W, we take 
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where W,, is the 'equilibrium' spectrum such that the modes with the smallest 
wavenumber are just marginally stable. All other modes are far away from the 
threshold for instability and they remain stable if W, is increased by a small fractional 
amount above its critical value Woc. 

Let us introduce 
w = wo+W; (32) 

then (1  1 )  becomes 

where we have used (31) and p" = J d p v .  This shows that for finite A the right-hand 
side of (33) will push the marginally stable modes into the unstable region. This 
equation is solved by means of the multiple-scale technique. To this end we introduce 
many timescales r1 = Alt; hence 

since, according to the analysis of $2,  7, = t ,  
In  addition, we expand m and p" in powers of A ,  

= O(At) for the double-root transition. 

a usual assumption in asymptotic theories. The coefficients of expansion W ,  and pt 
are functions of all 7,. Of course, W, is also a function of x and p, and p1 is also a 
function of x. Substitution of the expansions (34) and (35) in (33) results in the 
hierarchy 

where 
Az:LW, = Sl ( I  = 1 ,2 ,3 ,  ...), (36) 

and the source terms S, contain only lower-order W, with m < 1 - 1 .  S, will generate 
higher harmonics and may also contain terms which give rise to a secular behaviour 
of W, on the timescale 7,. Since many timescales are introduced, there is sufficient 
freedom to prevent this secular behaviour on the fast timescale 7,. 

The requirement that  secularity be absent may be formulated as follows. It is 
customary (cf. e.g. Simon 1968; Drazin 1970) to introduce the adjoint of L, denoted 
as Lt. Let x be the adjoint function such that 

LtX = 0;  

( X , X , )  = 0. (37) 

then, in order to avoid secularities, e.g. to have bounded solutions on the timescale 
r,, we require that 

Since we restrict our attention to periodic solutions in r,, and x, the inner product 
($, +) is defined as 
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where the integrations over 7, and x extend respectively over one period and one 
wavelength, and p is integrated over the interval ( - co, co). An asterisk denotes the 
complex conjugate (c.c.). 

We remark, however, that for adjoint functions of the form x = fexp  (it?), where 
6 = kX-wc70 (w,  = 2ku,), the solution of the adjoint problem is given by 
2 = l /(p-u,) .  Therefore the evaluation of the integral over p presents special 
problems because of the singularity of x a t  p = u,. Just as in the linear theory of $2, 
we resolve this indeterminacy by solving the hierarchy of equations (36) by means 
of the Laplace-transform technique. Hence, writing 

S, = sl, , + s1, eie + higher harmonics + c.c. 

for the source term, we obtain 

LW, = sl, ,+ s,, eie + higher harmonics + c.c. (38) 

Both the terms s,,, and s , , ~  exp (i6) give rise to secularity. Solving (38) by means 
of the Laplace-transform technique, absence of secularity is found if 

s1,o = 0, (39a) 

whereas the solvability condition for the term oscillating with eigenfrequency w, reads 

d p A  s z l  - 0  - ( t > 0 ) .  (39 b )  

Just as in the linear theory of $2, for positive times the integration contour is indented 
below the singularity at p = u,, whereas for negative times it is indented above the 
singularity. Note that the solvability condition (39b) is of the form (37), except that 
the Laplace-transform technique gives a description of how to deal with the 
singularity a t p  = u,, thereby resolving the indeterminacy. For more details see Simon 
& Rosenbluth (1976). 

In  order to obtain a unique solution of the hierarchy (37), initial and boundary 
conditions have to be specified. At t = 0, we assume that only the unstable mode(s) 
and its higher harmonics are excited. I n  addition, we require periodic boundary 
conditions in x-space, and that W, vanishes sufficiently rapidly for p++- co so that 
all the integrals over p exist. 

In $$3.1-3.4 the hierarchy of equations (37) is solved order by order, subject to 
the initial and boundary conditions. Secularities can be avoided by application of the 
conditions (39a, b ) ,  and as a result we obtain a nonlinear evolution equation for the 
amplitude of the slightly unstable modulation. Both the effect of the modification 
of the equilibrium W,, and second harmonics stabilize the linearly unstable modulation. 
In the so-called quasilinear approximation (i.e. the effect of second harmonics is 
neglected) a simple interpretation of the saturation mechanism is given. Also the 
transition of a single root is discussed. 

3.1. First-order theory (double root) 
In  first order the linear problem that has been investigated in $2 results, and because 
of the particular choice of the spectrum (namely W, = Woc) the two modes with the 
smallest possible wavenumber k are just stable. In  view of the initial conditions the 
solution reads 

W, = -rqc@)eie+c.c., 
P-Vc  

(40) 

BLM 133 5 
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where 0 = kx - w, ro and r is a complex amplitude which is still an unknown function 
of the timescales T ~ ,  T,, . . . . One can easily check that (40)  is a solution of the linear 
problem (14)  (with Wo = Woe) provided that the conditions (22a ,  b)  are satisfied. We 
incidentally remark that by virtue of ( 2 2 a ) ,  i.e. yc(vc)  = 0, Wl is a well-defined 
function ofp.  For a double root in the dispersion relation a solution proportional to 
ro exp (8) is also found. We do not need this solution as a starting point because i t  
is automatically generated by the perturbation scheme. 

3.2. Second-order theory (double root) 

I n  second order we obtain 

where p1 = r e x p  (i0) + C.C. The first term on the right-hand side may produce 
secularity since i t  oscillates with frequency w,. Application of the solvability 
condition (39b)  gives 

Since for the double-root transition D' = O(d) by assumption, the solvability 
condition (42) is satisfied to  the required order. Elimination of Wl and p1 from (41)  
results in 

LW, = -- 
P - V C  a ~ ,  

where we have introduced the notation 

2 sinh -- f = f(p ++k) -f(p - @ ) .  (3 
The solution of (43)  reads 

W, = W,,(p, 71) + ( W,, ei8+ W,, ezis+ c.c.), 

(43)  

(44)  
where 

Here y c ( p , 2 k )  and D ( v C , 2 k )  are evaluated at 2k. I n  second order the term giving 
modification of the equilibrium, Wz0, is still undetermined, but will be in third order. 
We finally make the following remark regarding the solution of WZl. The relevant 

1 
equation reads 

2ik p - vC a7, (45) 

and the solution in (44)  is obtained by neglecting the integral j dp Wzl, in agreement 
with our assumption 

,dP = ( A ) .  
DI = T C  I, (P- V C )  

Of course, although the effect of the integral j d p  W,, is neglected in second order, 
we have to retain it in third order. 
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3.3. Third-order theory (double-root) 

The third-order problem reads 

2ikr sdp ( W,, eis + c.c.) L W - s  ---W--W------" a a 
a?, a?, ' A  3 -  3 -  

The source term S3 contains a steady-state term and a term oscillating with frequency 
w,, which, as already noted, both produce secularity. Application of condition (39a) 
then gives an equation for the modification of the equilibrium, 

which may immediately be integrated with respect to  T,,  

for a particular choice of the initial condition on W,,. We remark that W,, is a singular 
function leading to  non-summable integrals on the real axis when multiplied by a 
'good ' function. In  order to regularize this function we follow Gelfand & Shilov (1964) 
and Simon & Rosenbluth (1976) and add a functional to (47) concentrated a t  
p + $ k  = vc and p-$k = v,, i.e. 

where 8,) is the nth derivative of the delta function and ( P - V , ) - ~  is the usual 
generalized function. Since a, is arbitrary we may generate all regularizations of W2,. 
The only restrictions come from the fact that  all solutions of our basic equation (1 1) 
satisfy certain conservation laws. The first few are given by 

dt 
dt A j d s d p p W  = 0, $[ dt SdxdpplW- 

(49% 6, c )  

assuming periodic boundary conditions in x-space and the vanishing of W for large 
p .  Using the expansion (35), to  second order in A (49a) does not impose a restriction 
on the coefficients a, because 

dp W,, = 0. s 
From (49b) we find a t  once 

a, = - P f d p A  
(P--d2' 

and from (49c) we obtain to second order in A 

A[ dt j d x d p p 2 K o -  

since the integral over W,, is constant in time. One immediately finds a, = 0. I n  this 
fashion all the conservation laws may be satisfied. 

We incidentally note that the conservation laws (49) admit a simple physical 
5-2 
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interpretation. Equation (49a) states that  the averaged energy is conserved, whereas 
(49 b )  tells us that the averaged wavenumber (p) defined as 

jdXdPPW 
<P> = 

j d x d p  W 

is conserved. Finally (49c) provides us with information on the evolution of the width 
u of the spectrum, defined as 

j d x d p p 2 W  
u2 G 

j d x d p  W ' 

I n  particular, the width of the spectrum increases in the presence of an unstable 
modulation. 

As already remarked, the source term S, also contains a term oscillating with the 
eigenfrequency w, of the linear system and thus may result in secularity in W,. Then 
application of the solvability condition (39 b )  results iii the following Duffing equation 
(with complex coefficients) for the complex amplitude r of the unstable modulation : 

where 

T C  B = -4ikDI = -4ik 

c = 8k2, 

D=-16kju- .  P--c  * [ ~ i n h ( k _ ~ ) ( ~ , - ~ , ) + 6 ~ ~ s i n h  2 aP ( k- W, -1.J 
Here W20 = Wz0/1fl2, R2 = W,,/P, ,bZ2 = jdp @22 and = WJr. We emphasize 
again that our result depends on the sense of time. For positive times, the contour 
of integration is indented below the singularities on the real p-axis, whereas for 
negative times the contour is indented above the singularities. As a result, for positive 
and negative times the same time behaviour is found from (51a). 

We remark that nonlinear effects considerably modify the growth rate of the 
linearly unstable modulation. Let us comment on the so-called quasilinear approx- 
imation (i.e. the effect of second harmonics is neglected). From the conservation laws 
(49c) or (50) we see a t  once that the modification of the equilibrium A 2  W,, gives rise 
to a broadening of the final time distribution function W, + A 2  Wz0. Since, as already 
noted, the effect of finite bandwidth is stabilizing, i t  is plausible that the modification 
of the equilibrium quenches the instability. Thus, the effect of the unstable 
modulation on the equilibrium is such as to  increase the width of the spectrum 
W, + A 2  Wz0, thereby making the new equilibrium neutrally stable. 

I n  the quasilinear case there is therefore a relatively simple interpretation of the 
saturation of the instability. One can obtain i t  by requiring that the final time 
spectrum W, + A 2  W,, be such as to  make the new system neutrally stable. We do not 
show this straightforward calculation here, but the reader can easily check this by 
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substituting W, + A 2  W,, into the dispersion relation ( 1 7 )  and imposing the condition 
of neutral stability. I n  the full nonlinear case such a simple interpretation is not 
possible. 

The expression for D ,  measuring the effect of nonlinearity, may be simplified 
considerably. To that end we use the expressions for Wl, w2,, and b22 and we 
realize that the sinh operator is given by a similar series as the sin operator in (12) .  
Partial integration and some simplifications then give the result 

We emphasize that the nonlinear evolution equation (51 a )  holds for general 'equi- 
libria' W, provided that a t  the threshold there is a double root. For the special case 
of a Lorentz profile with a small bandwidth (T = A @  all the integrals in (51c) may 
be evaluated. To lowest order in (T the result is (full nonlinear) 

Remark that in the linear approximation we obtain two modes, namely a growing 
one and a damped one (cf. (29a, b ) ) .  Also, in the case of a spectrum with vanishing 
bandwidth, i.e. @ = 0, we rediscover the well-known Fermi-Pasta-Ulam (1940) 
recurrence, since (52)  with @ = 0 gives periodic solutions in time (see figure 3) .  This 
is very reassuring since also the long-time behaviour of a single, slightly unstable 
modulation of a deterministic, uniform wavetrain exhibits the Fermi-Pasta-Ulam 
recurrence phenomenon (Yuen & Ferguson 1978 ; Janssen 1981 ; Infeld 1981). 

Also, the saturation level of the instability is in agreement with the deterministic 
results. 

For finite bandwidth, however, the recurrence is not perfect, because of the 
dissipative term in (52). Let us study this case in more detail. Since r is complex, 
we put 

r = p ei4 

with real p and $ to obtain from (52) the following coupled set of equations: 

where a2 = 4@k, y2 = k4 and pz = 8. Equation (53 b )  may be integrated at once to 
give 

p2-$ = aexp ( -a2r,),  

where a is a constant to be determined from the initial condition on the frequency 
shift a$/a7,. Since for the Lorentz profile there is no linear frequency shift (cf. (29a)) ,  
we take a$(O)/ar, = 0, hence a = 0. As a result, (53a)  becomes 

a 
a71 

This equation has the features sketched in figure 3 .  Thus, for small but finite 
bandwidth, the amplitude r (or p)  shows initially an overshoot followed by a damped 
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7 

u = d F = 0 (recurrence) U ' A F f  0 

--b 
u = O ( I )  

FIGURE 3. Long-time behaviour of the random version of the Benjamin-Feir instability. Shown 
are the cases of a uniform wavetrain (g = 0 ) ,  a narrow spectrum u = O(d), and a broad spectrum 
u = O(1) .  

oscillation around its time-asymptotic value. This damping is caused by phase mixing, 
as explained in the appendix. Only in the limit of vanishing bandwidth (i.e. a2 = 0) 
we have perfect recurrence. 

3.4. Evolution in time for the simple-root transition 

For the simple-root transition the growth of the unstable mode is of order A 2  
according to (23)  and (25a) .  Therefore, in order to study the long-time behaviour of 
the random version of the Benjamin-Feir instability of a broad spectrum, one 
introduces many timescales 721 = Az2t ( 1  = 0, 1,2,  . . .). I n  combination with the 
expansions for @ and p" given in (35) ,  one then arrives a t  a hierarchy of equations of 
the form given in (36) .  Subsequently one solves this hierarchy order by order subject 
to the initial and boundary conditions, while secularities can be avoided by applica- 
tion of the solvability conditions (39a, b) .  We have done the details of the 
calculations, but no purpose is served in reproducing calculations which are entirely 
analogous to those presented in $53.1-3.3 (for a similar problem, namely single-mode 
saturation of the bump-on-tail instability of plasma physics, see Janssen & Rasmussen 
1981). We merely note that, just as in the linear theory of $2,  the evolution equation 
for the simple-root case may be obtained from the evolution equation for the double 
root by formally taking the limit DI1+O in (51). Next, introducing the timescale 
72 = A71, we obtain for the simple-root case the nonlinear Landau equation (with 
complex coefficients) for the complex amplitude r of the unstable modulation : 

0 
B - r + C r + D l r 1 2  r= 0 ( t  > 0 ) ,  (55) 

a 7 2  

where the coefficients B ,  C and D are given in (51 b) .  The nonlinear Landau equation 
can be solved exactly, and by virtue of the fact that  i t  is a first-order differential 
equation its solution exhibits no overshoot. The reason apparently is that  for large 
bandwidth the damping owing to phase mixing becomes overwhelming so that 
overshoot is fully suppressed. 

Again, (55) holds for broad spectra, and for the special case of a Lorentz profile 
the coefficients B, C and D may be evaluated. The result is 

where 
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For k2 > ACT;, nonlinearity is stabilizing, and in this paper we confine ourselves to 
this case. 

Introducing f = p eib, we find at once that a$/&, = 0, so that the equation for 
the amplitude reads a 

-p-?/p+pp3 = 0. 
87, 

We have plotted the solution for p in figure 3, which shows that there is no overshoot. 
To conclude this section we remark that for spectra W o k ) ,  which are symmetrical 

with respect to p = 0, the coefficients in the evolution equations (51a)  and (55) are 
always real. As a consequence, no frequency shift is found as is evident from the 
solutions for the double-root transition (in this case a$/ar, decays to  zero for large 
t ) ,  and for the simple-root transition (here a$/&, = 0). Only for asymmetrical spectra 
do the coefficients A ,  B, C and D become complex, giving rise to a shift in the 
oscillation frequency of the unstable modulation. 

4. Summary of conclusions 
I n  this paper we have studied the long-time behaviour ofa  random inhomogeneous 

field of weakly nonlinear wavetrains. According to a linear stability analysis a 
homogeneous spectrum is unstable to long-wavelength perturbations if the width of 
the spectrum is suficiently small. A threshold for instability is present. By increasing 
the averaged wave steepness by a small fractional amount above its critical value, 
only one mode moves into the unstable region since periodic boundary conditions are 
assumed (hence we have discrete wavenumbers). The evolution in time of this slightly 
unstable mode is determined by means of the multiple-timescale analysis. Two 
interesting cases are found. For small but finite bandwidth the amplitude of the 
unstable modulation shows overshoot followed by an oscillation around its time- 
asymptotic value. This oscillation is damped owing to phase mixing except in the 
limit of vanishing bandwidth because then there is perfect recurrence. For large 
bandwidth the damping due to phase mixing becomes overwhelming so that no 
overshoot is found. 

It is tempting to relate our result on the overshoot of sidebands to the well-known 
‘overshoot phenomenon ’ observed in growing surface gravity waves under the action 
of the wind (Phillips 1977). I n  addition, the timescale 7 (which is given by 7-’ = e2w0) 
for this nonlinear process seems to be of the right order of magnitude. Of course, in 
an honest comparison the effect of the wind input should also be taken into account ; 
this, however, is beyond the scope of the present paper. 

Still, the question remains as to whether the random field of surface gravity waves 
has to be regarded as inhomogeneous or not. The evidence given by Alber (1978), 
namely that the width of the spectrum of growing sea waves is just of the order of 
the wave steepness, is very interesting but certainly not conclusive. Perhaps a 
convincing explanation of the ‘overshoot phenomenon ’ in terms of the nonlinear 
energy transfer due to inhomogeneities may shed some light on this problem, since 
the assumption of an inhomogeneous sea seems hard to test experimentally. 

This investigation started while the author visited the Department of Applied 
Mathematics a t  the California Institute of Technology. The author is pleased to 
acknowledge useful discussions with P.  G. Saffman and G. B. Whitham. Also inter- 
esting discussions with Albert Simon of the University of Rochester are gratefully 
acknowledged. Useful comments from the referees are also much appreciated. 
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Appendix 
Let us study the stability of a homogeneous spectrum in the framework of a normal 

mode analysis in order to give an explanation of the stabilizing effect of finite 
bandwidth. For simplicity, only stable homogeneous spectra are considered. Our 
starting point is the equation (16) for the perturbation % : 

W a 
- % + 2 i k p R  = -2iky(p) [ dpR. 
at - W  

Instead of solving (A 1)  by means of the Laplace-transform technique we look for 
solutions in terms of normal modes: 

Wl = exp ( - iot). (A 2) 

Substitution of (A 2) in (A 1)  gives 

w W 

(p-v) Q + y l  dp V1 = 0, v = - 
- W  2k' 

For a stable equilibrium, w and v are real. Choosing the normalization 

c" d p Q = l ,  
J - w  

the general solution of (A 3) reads 

P R = -y@)-- P-V + h ( v ) & ( p - v ) .  (A 5 )  

The symbol P means that the principal value has to  be taken when integrating over 
a domain that includes the point p = v. From the normalization condition (A 4) we 
obtain 

A ( v )  = l + P r  m d p .  
- w P - V  

This condition can be fulfilled for every v by choosing h appropriately. Thus the 
appearance of the parameter h makes i t  possible to  satisfy the normalization 
condition without having to relate v (or w )  to k. We therefore have a continuous 
spectrum. 

For special cases, i.e. ~ ( v )  = 0, the solution is different from the one given in (A 5 ) .  
For the present discussion these possibilities are disregarded (see e.g. Case 1959). Also 
note that for stable equilibria no discrete eigenvalues exist. 

The general solution of (A 1) is a superposition of the undamped normal modes 

OD 
(A 51, e.g. 

% = [ dvc(v) PI@, v) e-zivkt, (A 7 )  
- W  

where the coefficient c(v) is to be determined from the initial condition, i.e. 

R(p, 0) = Jw dvc(v) Q(p, v). 
- W  

Inserting (A 5) into (A 8) we arrive at the following singular integral equation for c: 

h(p)e (p)+Pr  dv q @ )  c(v) = %(p, O ) ,  (A 9) 
-02  v-P 
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which may be solved with the standard techniques from complex analysis with the 
result 

where 
1 

G=-j*wl(p,O), 2ni p-z  D =  1 +  J dp-, ,""1 zcomplex, 

and G+(u) = limG(z), etc. I n  principle we have solved now the initial-value 

problem for wl by means of the normal mode approach. Let us finally study the time 
behaviour of one of the moments of PI, e.g. 

Z S V  

P1= I dP w;, 
J 

where p1 measures the energy of the mode. Using the normalization for PI, we have 

We remark that D+(z) = D(z) ,  Im ( z )  > 0, has by assumption no zeros in the upper 
half of the complex z-plane because i t  is just the dispersion relation with Im ( u )  > 0. 
Therefore D- has no zeros in the lower half-plane, and G-/D- is an entire function 
in the lower half of the complex u-plane. As a result, for positive times the integral 
involving G-lD- in (A 12) vanishes. Hence 

As is evident from this expression, for smooth initial data, a continuum of normal 
modes is excited. Since for large times exp (-2ikut) will be an erratic function of u ,  
the integral will vanish for large t. Thus moments such as p1 decay to  zero owing to 
phase mixing of the continuum. However, the precise details of this decay depend 
also on the form of G+/D+. 

We emphasize the condition of the smoothness of G+/D+. If one excites a t  t = 0 
a single normal mode (which is highly singular) then p1 will be undamped. Also, in 
the limit of vanishing bandwidth, G+/D+ is not smooth, since D+(u) vanishes on the 
real u-axis. Therefore, in this case the moments of Wl will not decay to  zero. For finite 
bandwidth D+(u) does not vanish on the real axis, so that G+/D+ is smooth. The result 
is that  for finite bandwidth p1 decays to zero, where the decay rate is inversely 
proportional to the bandwidth u. 

We finally remark that our conclusion regarding the decay for smooth initial data 
only holds for the moments of PI and not for wl itself. However, for large times PI 
will be an erratic function of p such that the moments of wl will decay to zero. A 
similar explanation was given by van Kampen (1955) for the Landau damping of 
Langmuir waves. 
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